Farrell cohomology of low genus pure mapping class groups with punctures.
Lu, Qin (2002)
Algebraic & Geometric Topology
Bjorn Ian Dundas (1993)
Mathematica Scandinavica
Juan A. Navarro González (1990)
Extracta Mathematicae
We show that the study of topological T0-spaces with a finite number of points agrees essentially with the study of polyhedra, by means of the geometric realization of finite spaces. In this paper all topological spaces are assumed to be T0.
Karl-Heinz Fieseler, Ludger Kaup (1991)
Compositio Mathematica
A. Gramain (1976)
Mémoires de la Société Mathématique de France
J. Barge (1976)
Mémoires de la Société Mathématique de France
Max Karoubi (1995)
Annales scientifiques de l'École Normale Supérieure
Jack Morava (1989)
Mathematische Zeitschrift
Antonio Cassa (1973)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Karl Josef Ramspott (1973)
Manuscripta mathematica
Robert E. Reed (1980)
Paul Cherenack (1995)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Jerzy Dydak, Sławomir Nowak (2002)
Fundamenta Mathematicae
The purpose of this paper is to provide a geometric explanation of strong shape theory and to give a fairly simple way of introducing the strong shape category formally. Generally speaking, it is useful to introduce a shape theory as a localization at some class of “equivalences”. We follow this principle and we extend the standard shape category Sh(HoTop) to Sh(pro-HoTop) by localizing pro-HoTop at shape equivalences. Similarly, we extend the strong shape category of Edwards-Hastings to sSh(pro-Top)...
Andrew Baker, Birgit Richter (2011)
Open Mathematics
We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n, and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group , the cochain extension is not a Galois...
Daciberg Lima Goncalves (1983)
Mathematica Scandinavica
Chataur, David (2002)
Algebraic & Geometric Topology
Wilhelm Singhof (1978)
Mathematische Zeitschrift
Tamanoi, Hirotaka (2001)
Algebraic & Geometric Topology
Tamanoi, Hirotaka (2003)
Algebraic & Geometric Topology
Oswald Gschnitzer (1996)
Manuscripta mathematica