Displaying 41 – 60 of 72

Showing per page

The S1-CW decomposition of the geometric realization of a cyclic set

Zbigniew Fiedorowicz, Wojciech Gajda (1994)

Fundamenta Mathematicae

We show that the geometric realization of a cyclic set has a natural, S 1 -equivariant, cellular decomposition. As an application, we give another proof of a well-known isomorphism between cyclic homology of a cyclic space and S 1 -equivariant Borel homology of its geometric realization.

The Vietoris system in strong shape and strong homology

Bernd Günther (1992)

Fundamenta Mathematicae

We show that the Vietoris system of a space is isomorphic to a strong expansion of that space in the Steenrod homotopy category, and from this we derive a simple description of strong homology. It is proved that in ZFC strong homology does not have compact supports, and that enforcing compact supports by taking limits leads to a homology functor that does not factor over the strong shape category. For compact Hausdorff spaces strong homology is proved to be isomorphic to Massey's homology.

Top-Dimensional Group of the Basic Intersection Cohomology for Singular Riemannian Foliations

José Ignacio Royo Prieto, Martintxo Saralegi-Aranguren, Robert Wolak (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

It is known that, for a regular riemannian foliation on a compact manifold, the properties of its basic cohomology (non-vanishing of the top-dimensional group and Poincaré duality) and the tautness of the foliation are closely related. If we consider singular riemannian foliations, there is little or no relation between these properties. We present an example of a singular isometric flow for which the top-dimensional basic cohomology group is non-trivial, but the basic cohomology does not satisfy...

Topological bar-codes of fractals: a new characterization of symmetric binary fractal trees

Tara D. Taylor (2009)

Banach Center Publications

The goal of this paper is to provide foundations for a new way to classify and characterize fractals using methods of computational topology. The fractal dimension is a main characteristic of fractal-like objects, and has proved to be a very useful tool for applications. However, it does not fully characterize a fractal. We can obtain fractals with the same dimension that are quite different topologically. Motivated by techniques from shape theory and computational topology, we consider fractals...

Currently displaying 41 – 60 of 72