A Cellular Construction of BP and Other Irreducible Spectra.
We show that every small homotopy functor from spectra to spectra is weakly equivalent to a filtered colimit of representable functors represented in cofibrant spectra. Moreover, we present this classification as a Quillen equivalence of the category of small functors from spectra to spectra equipped with the homotopy model structure and the opposite of the pro-category of spectra with the strict model structure.
Because of its strong interaction with almost every part of pure mathematics, algebraic K-theory has had a spectacular development since its origin in the late fifties. The objective of this paper is to provide the basic definitions of the algebraic K-theory of rings and an overview of the main classical theorems. Since the algebraic K-groups of a ring R are the homotopy groups of a topological space associated with the general linear group over R, it is obvious that many general results follow...