MacLane homology and topological Hochschild homology.
This is a survey of the results on stable homotopy types of polyhedra of small dimensions, mainly obtained by H.-J. Baues and the author [3, 5, 6]. The proofs are based on the technique of matrix problems (bimodule categories).
The paper is devoted to the study of the space of multiplicative maps from the Eilenberg-MacLane spectrum Hℤ to an arbitrary ring spectrum R. We try to generalize the approach of Schwede [Geom. Topol. 8 (2004)], where the case of a very special R was studied. In particular we propose a definition of a formal group law in any ring spectrum, which might be of independent interest.
A family of multiplicative operations in the BP Steenrod algebra is defined which is related to the total Steenrod power operation from the mod p Steenrod algebra. The main result of the paper links the BP versions of the total Steenrod power with the formal group approach to multiplicative BP operations by identifying the p-typical curves (power series) which correspond to these operations. Some relations are derived from this identification, and a short proof of the Hopf invariant one theorem...