Quotient models of a category up to directed homotopy.
Grandis, Marco (2006)
Theory and Applications of Categories [electronic only]
Kahl, Thomas (2006)
Journal of Homotopy and Related Structures
Fahrenberg, U., Raussen, M. (2007)
Journal of Homotopy and Related Structures
T. Chapman (1972)
Fundamenta Mathematicae
B. J. Ball (1974)
Colloquium Mathematicae
Sławomir Nowak (1974)
Fundamenta Mathematicae
Karol Borsuk (1976)
Fundamenta Mathematicae
Karol Borsuk (1974)
Fundamenta Mathematicae
Zheng-Xu He (1983)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Seguendo le idee presentate nei lavori [1] e [2] si studiano le proprietà dei gruppi di -omotopia per moduli ed omomorfismi di moduli.
R.M. Vogt (1982)
Manuscripta mathematica
Timothy Porter (1974)
Mathematische Zeitschrift
A. Lelek (1977)
Colloquium Mathematicae
François-Xavier Dehon, Jean Lannes (1999)
Publications Mathématiques de l'IHÉS
Jean Lannes (1992)
Publications Mathématiques de l'IHÉS
J. M. Cordier (1987)
Compositio Mathematica
Gaucher, Philippe (2007)
International Journal of Mathematics and Mathematical Sciences
Artur Pruszko (1999)
Banach Center Publications
Topological spaces with generalized symmetries are defined and extensions of the Conley index of a compact isolated invariant set of the flow preserving the structures introduced are proposed. One of the two new indexes is constructed with no additional assumption on the examined set in terms of symmetry invariance.
Yves Felix, Jean-Claude Thomas (1988)
Mathematische Zeitschrift
Andrica, Dorin, Pintea, Cornel (2002)
Balkan Journal of Geometry and its Applications (BJGA)
Jeff Strom (2008)
Fundamenta Mathematicae
The suspension and loop space functors, Σ and Ω, operate on the lattice of Bousfield classes of (sufficiently highly connected) topological spaces, and therefore generate a submonoid ℒ of the complete set of operations on the Bousfield lattice. We determine the structure of ℒ in terms of a single parameter of homotopy theory which is closely tied to the problem of desuspending weak cellular inequalities.