Displaying 81 – 100 of 101

Showing per page

Soldered double linear morphisms

Alena Vanžurová (1992)

Mathematica Bohemica

Our aim is to show a method of finding all natural transformations of a functor T T * into itself. We use here the terminology introduced in [4,5]. The notion of a soldered double linear morphism of soldered double vector spaces (fibrations) is defined. Differentiable maps f : C 0 C 0 commuting with T T * -soldered automorphisms of a double vector space C 0 = V * × V × V * are investigated. On the set Z s ( C 0 ) of such mappings, appropriate partial operations are introduced. The natural transformations T T * T T * are bijectively related with the elements...

Stratified model categories

Jan Spaliński (2003)

Fundamenta Mathematicae

The fourth axiom of a model category states that given a commutative square of maps, say i: A → B, g: B → Y, f: A → X, and p: X → Y such that gi = pf, if i is a cofibration, p a fibration and either i or p is a weak equivalence, then a lifting (i.e. a map h: B → X such that ph = g and hi = f) exists. We show that for many model categories the two conditions that either i or p above is a weak equivalence can be embedded in an infinite number of conditions which imply the existence of a lifting (roughly,...

Sur les feuilletages des variétés fibrées

Hamidou Dathe, Cédric Tarquini (2008)

Annales mathématiques Blaise Pascal

Nous construisons un feuilletage exotique de classe C 1 sur tout fibré hyperbolique de genre 1 . Nous montrons égalemnt des théorèmes de rigidité des feuilletages modèles sur certains fibrés pseudo-Anosov.

Sur les ouverts des CW-complexes et les fibrés de Serre

Robert Cauty (1992)

Colloquium Mathematicae

M. Steinberger et J. West ont prouvé dans [7] qu’un fibré de Serre p:E → B entre CW-complexes a la propriété de relèvement des homotopies par rapport aux k-espaces. Malheureusement, leur démonstration contient une légère erreur. Ils affirment que certains ensembles (notés U et p - 1 U × U ) sont des CW-complexes car ce sont des ouverts de CW-complexes. Ceci est généralement faux, et notre premier objectif dans cette note est de donner des exemples d’ouverts de CW-complexes n’admettant aucune décomposition...

The ℤ₂-cohomology cup-length of real flag manifolds

Július Korbaš, Juraj Lörinc (2003)

Fundamenta Mathematicae

Using fiberings, we determine the cup-length and the Lyusternik-Shnirel’man category for some infinite families of real flag manifolds O ( n + . . . + n q ) / O ( n ) × . . . × O ( n q ) , q ≥ 3. We also give, or describe ways to obtain, interesting estimates for the cup-length of any O ( n + . . . + n q ) / O ( n ) × . . . × O ( n q ) , q ≥ 3. To present another approach (combining well with the “method of fiberings”), we generalize to the real flag manifolds Stong’s approach used for calculations in the ℤ₂-cohomology algebra of the Grassmann manifolds.

Currently displaying 81 – 100 of 101