Mappings of the sphere to a simply connected space.
In many situations, minimal models are used as representatives of homotopy types. In this paper we state this fact as an equivalence of categories. This equivalence follows from an axiomatic definition of minimal objects. We see that this definition includes examples such as minimal resolutions of Eilenberg-Nakayama-Tate, minimal fiber spaces of Kan and Λ-minimal Λ-extensions of Halperin. For the first one, this is done by generalizing the construction of minimal resolutions of modules to complexes....
The paper is devoted to the study of the space of multiplicative maps from the Eilenberg-MacLane spectrum Hℤ to an arbitrary ring spectrum R. We try to generalize the approach of Schwede [Geom. Topol. 8 (2004)], where the case of a very special R was studied. In particular we propose a definition of a formal group law in any ring spectrum, which might be of independent interest.