-homotopy and refinement of observation. II: Adding new -homotopy equivalences.
We study the Taylor towers of the nth symmetric and exterior power functors, Spⁿ and Λⁿ. We obtain a description of the layers of the Taylor towers, and , in terms of the first terms in the Taylor towers of and for t < n. The homology of these first terms is related to the stable derived functors (in the sense of Dold and Puppe) of and . We use stable derived functor calculations of Dold and Puppe to determine the lowest nontrivial homology groups for and .
We construct a 3-Lie 2-algebra from a 3-Leibniz algebra and a Rota-Baxter 3-Lie algebra. Moreover, we give some examples of 3-Leibniz algebras.
The tropical semiring (R, min, +) has enjoyed a recent renaissance, owing to its connections to mathematical biology as well as optimization and algebraic geometry. In this paper, we investigate the space of labeled n-point configurations lying on a tropical line in d-space, which is interpretable as the space of n-species phylogenetic trees. This is equivalent to the space of n x d matrices of tropical rank two, a simplicial complex. We prove that this simplicial complex is shellable for dimension...
We show that the geometric realization of a cyclic set has a natural, -equivariant, cellular decomposition. As an application, we give another proof of a well-known isomorphism between cyclic homology of a cyclic space and -equivariant Borel homology of its geometric realization.
We introduce the universal functorial Lefschetz invariant for endomorphisms of finite CW-complexes in terms of Grothendieck groups of endomorphisms of finitely generated free modules. It encompasses invariants like Lefschetz number, its generalization to the Lefschetz invariant, Nielsen number and -torsion of mapping tori. We examine its behaviour under fibrations.