Remarks on canonical commutation relations
The paper extends the theory of residues on monogenic forms on domains in (monogenic forms are generalizations of holomorphic forms to Clifford analysis) to monogenic forms on orientable Riemann manifolds.
Given a fibered manifold , a 2-connection on means a section . The authors determine all first order natural operators transforming a 2-connection on and a classical linear connection on into a connection on . (The proof implies that there is no first order natural operator transforming 2-connections on into connections on .) Using this result, the authors deduce several properties of characterizable connections on .
For a three-web of codimension on a differentiable manifold of dimension , the author studies the Chern connection and a family of parallelizing connections. The latter ones have a common property with the former: the web-distributions are parallel with respect to them.
The author uses the concept of the first principal prolongation of an arbitrary principal filter bundle to develop an alternative procedure for constructing the prolongations of a class of the first-order -structures. The motivation comes from the almost Hermitian structures, which can be defined either as standard first-order structures, or higher-order structures, but if they do not admit a torsion-free connection, the classical constructions fail in general.
[For the entire collection see Zbl 0699.00032.] A fibration is called totally noncohomologuous to zero (TNCZ) with respect to the coefficient field k, if is surjective. This is equivalent to saying that acts trivially on and the Serre spectral sequence collapses at . S. Halperin conjectured that for and F a 1-connected rationally elliptic space (i.e., both and are finite dimensional) such that vanishes in odd degrees, every fibration is TNCZ. The author proves this being the case...