-knots via the mapping class group of the twice punctured torus.
We describe unicorn paths in the arc graph and show that they form 1-slim triangles and are invariant under taking subpaths. We deduce that all arc graphs are 7-hyperbolic. Considering the same paths in the arc and curve graph, this also shows that all curve graphs are 17-hyperbolic, including closed surfaces.
We describe a combinatorial algorithm for constructing all orientable 3-manifolds with a given standard bidimensional spine by making use of the idea of bijoin (Bandieri and Gagliardi (1982), Graselli (1985)) over a suitable pseudosimplicial triangulation of the spine.
We create a framework for odd Khovanov homology in the spirit of Bar-Natan's construction for the ordinary Khovanov homology. Namely, we express the cube of resolutions of a link diagram as a diagram in a certain 2-category of chronological cobordisms and show that it is 2-commutative: the composition of 2-morphisms along any 3-dimensional subcube is trivial. This allows us to create a chain complex whose homotopy type modulo certain relations is a link invariant. Both the original and the odd Khovanov...
We construct a cohomology transfer for n-fold ramified covering maps. Then we define a very general concept of transfer for ramified covering maps and prove a classification theorem for such transfers. This generalizes Roush's classification of transfers for n-fold ordinary covering maps. We characterize those representable cofunctors which admit a family of transfers for ramified covering maps that have two naturality properties, as well as normalization and stability. This is analogous to Roush's...
We employ the sl(2) foam cohomology to define a cohomology theory for oriented framed tangles whose components are labeled by irreducible representations of . We show that the corresponding colored invariants of tangles can be assembled into invariants of bigger tangles. For the case of knots and links, the corresponding theory is a categorification of the colored Jones polynomial, and provides a tool for efficient computations of the resulting colored invariant of knots and links. Our theory is...
In this note, we prove the existence of a tri-graded Khovanov-type bicomplex (Theorem 1.2). The graded Euler characteristic of the total complex associated with this bicomplex is the colored Jones polynomial of a link. The first grading of the bicomplex is a homological one derived from cabling of the link (i.e., replacing a strand of the link by several parallel strands); the second grading is related to the homological grading of ordinary Khovanov homology; finally, the third grading is preserved...