Embedding Cantor sets in a manifold. III. Approximating spheres
R. Osborne (1976)
Fundamenta Mathematicae
Frank Quin (1982)
Inventiones mathematicae
M. van de Vel (1983)
Mathematische Annalen
Elmar Vogt (1993)
Mathematische Annalen
A. Boals (1973)
Fundamenta Mathematicae
Walter D. Neumann, Steven H. Weintraub (1978)
Mathematische Annalen
Timothy Lance (1975)
Commentarii mathematici Helvetici
V. L. Golo, M. I. Monastyrsky (1978)
Annales de l'I.H.P. Physique théorique
Kennedy, Judy A., Yorke, James A. (2003)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
S. Singh (1983)
Fundamenta Mathematicae
T. Rushing (1972)
Fundamenta Mathematicae
Metod Alif (1982)
Mathematische Annalen
Hanspeter Fischer, David G. Wright (2003)
Fundamenta Mathematicae
Hass, Rubinstein, and Scott showed that every closed aspherical (irreducible) 3-manifold whose fundamental group contains the fundamental group of a closed aspherical surface, is covered by Euclidean space. This theorem does not generalize to higher dimensions. However, we provide geometric tools with which variations of this theorem can be proved in all dimensions.
Maria Rita Casali, Luca Malagoli (1997)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Richard Tondra (1980)
Fundamenta Mathematicae
Peter Orlik (1973)
Mathematica Scandinavica
Vo-Thanh Liem (1979)
Fundamenta Mathematicae
S. Singh (1988)
Colloquium Mathematicae
Neelima Shrikhande (1983)
Fundamenta Mathematicae
J. Krasinkiewicz (1988)
Fundamenta Mathematicae