Chapman's Classification of Shapes. A Proof Using Collapsing.
Knot complements in the n-sphere are characterized. A connected open subset W of is homeomorphic with the complement of a locally flat (n-2)-sphere in , n ≥ 4, if and only if the first homology group of W is infinite cyclic, W has one end, and the homotopy groups of the end of W are isomorphic to those of in dimensions less than n/2. This result generalizes earlier theorems of Daverman, Liem, and Liem and Venema.
On définit le bicomplexe , extension naturelle du complexe engendré par un ensemble simplicial . Ceci permet de définir la notion de ruban de base un cycle de . La somme directe de l’homologie des colonnes de contient, outre l’homologie de , des groupes dans lesquels se trouvent les obstructions à l’existence de rubans. Si est un sous-ensemble simplicial, stable par subdivision, de l’ensemble des simplexes singuliers d’un espace topologique, l’existence de rubans entraîne l’invariance...