A Cohomological Proof of the Torus Theorem.
Page 1
James P. Lin (1985)
Mathematische Zeitschrift
Masaki Nakagawa (2008)
Fundamenta Mathematicae
We describe the integral cohomology rings of the flag manifolds of types Bₙ, Dₙ, G₂ and F₄ in terms of their Schubert classes. The main tool is the divided difference operators of Bernstein-Gelfand-Gelfand and Demazure. As an application, we compute the Chow rings of the corresponding complex algebraic groups, recovering thereby the results of R. Marlin.
Steven A. Mitchell (1986)
Mathematische Zeitschrift
Kurdiani, R., Pirashvili, T. (2002)
Journal of Lie Theory
J. H. Rubinstein, C. Gardiner (1979)
Compositio Mathematica
M.S. RAGHUNATHAN (1967/1968)
Inventiones mathematicae
Tomáš Rusin (2019)
Archivum Mathematicum
We use known results on the characteristic rank of the canonical –plane bundle over the oriented Grassmann manifold to compute the generators of the –cohomology groups for . Drawing from the similarities of these examples with the general description of the cohomology rings of we conjecture some predictions.
Jean Lannes, Lionel Schwartz (1986)
Inventiones mathematicae
Shrawan Kumar (1982)
Mathematische Annalen
A. D. Elmendorf (1985)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Volker Hauschild (1985)
Mathematische Zeitschrift
Andreas Stieglitz (1978)
Mathematische Annalen
Wu Yi Hsiang (1975)
Commentarii mathematici Helvetici
Daniel Quillen (1988)
Publications Mathématiques de l'IHÉS
Silvia Benvenuti (2000)
Bollettino dell'Unione Matematica Italiana
Henning Hauschild (1975)
Mathematische Zeitschrift
J.-C. Houard (1980)
Annales de l'I.H.P. Physique théorique
Larry Lambe, Jim Stasheff (1987)
Manuscripta mathematica
A. Douady, L. Hérault (1973)
Commentarii mathematici Helvetici
Jürgen Rohlfs, Birgit Speh (1989)
Annales scientifiques de l'École Normale Supérieure
Page 1