Displaying 101 – 120 of 387

Showing per page

Clifford approach to metric manifolds

Chisholm, J. S. R., Farwell, R. S. (1991)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0742.00067.]For the purpose of providing a comprehensive model for the physical world, the authors set up the notion of a Clifford manifold which, as mentioned below, admits the usual tensor structure and at the same time a spin structure. One considers the spin space generated by a Clifford algebra, namely, the vector space spanned by an orthonormal basis { e j : j = 1 , , n } satisfying the condition { e i , e j } e i e j = e j e i = 2 I η i j , where I denotes the unit scalar of the algebra and ( η i j ) the nonsingular Minkowski...

Close cohomologous Morse forms with compact leaves

Irina Gelbukh (2013)

Czechoslovak Mathematical Journal

We study the topology of foliations of close cohomologous Morse forms (smooth closed 1-forms with non-degenerate singularities) on a smooth closed oriented manifold. We show that if a closed form has a compact leave γ , then any close cohomologous form has a compact leave close to γ . Then we prove that the set of Morse forms with compactifiable foliations (foliations with no locally dense leaves) is open in a cohomology class, and the number of homologically independent compact leaves does not decrease...

Closed surfaces with different shapes that are indistinguishable by the SRNF

Eric Klassen, Peter W. Michor (2020)

Archivum Mathematicum

The Square Root Normal Field (SRNF), introduced by Jermyn et al. in [5], provides a way of representing immersed surfaces in 3 , and equipping the set of these immersions with a “distance function" (to be precise, a pseudometric) that is easy to compute. Importantly, this distance function is invariant under reparametrizations (i.e., under self-diffeomorphisms of the domain surface) and under rigid motions of 3 . Thus, it induces a distance function on the shape space of immersions, i.e., the space...

Codimension 4 singularities on reflectionally symmetryc planar vector fields.

Freddy Dumortier, Santiago Ibáñez (1999)

Publicacions Matemàtiques

The paper deals with the topological classification of singularities of vector fields on the plane which are invariant under reflection with respect to a line. As it has been proved in previous papers, such a classification is necessary to determine the different topological types of singularities of vector fiels on R3 whose linear part is invariant under rotations. To get the classification we use normal form theory and the the blowing-up method.

Currently displaying 101 – 120 of 387