Displaying 141 – 160 of 205

Showing per page

Some geometric aspects of the calculus of variations in several independent variables

David Saunders (2010)

Communications in Mathematics

This paper describes some recent research on parametric problems in the calculus of variations. It explains the relationship between these problems and the type of problem more usual in physics, where there is a given space of independent variables, and it gives an interpretation of the first variation formula in this context in terms of cohomology.

Sur l'existence d'intégrales premières pour un germe de forme de Pfaff

Robert Moussu (1976)

Annales de l'institut Fourier

Soit ω ( x ) = i = 1 n a i ( x ) d x i un germe en 0 R n d’une forme de Pfaff, complètement intégrable ( ω d ω = 0 ) de classe C ou analytique, dont 0 est un zéro algébriquement isolé ( dim R E n / [ a 1 , a 2 , ... , a n ] < ) . La matrice a i x j ( 0 ) est symétrique ; soit q w la forme quadratique correspondante. On montre dans ce travail :i) que ω possède une intégrale première formelle (i.e., j ω = g d f , g ( 0 ) 0 f et g sont des séries formelles).ii) que, si ω est analytique et rang q w 2 , ω possède une intégrale première analytique (i.e. ω = g d f , g ( 0 ) 0 , g , f 0 n ).iii) que, si ω est C et si (indice q m ) n - 1 3 , ω possède une intégrale...

The natural linear operators T * T T ( r )

J. Kurek, W. M. Mikulski (2003)

Colloquium Mathematicae

For natural numbers n ≥ 3 and r a complete description of all natural bilinear operators T * × f T ( 0 , 0 ) T ( 0 , 0 ) T ( r ) is presented. Next for natural numbers r and n ≥ 3 a full classification of all natural linear operators T * | f T T ( r ) is obtained.

Currently displaying 141 – 160 of 205