On diffeomorphisms deleting weak compacta in Banach spaces
We prove that if X is an infinite-dimensional Banach space with smooth partitions of unity then X and X∖ K are diffeomorphic for every weakly compact set K ⊂ X.
We prove that if X is an infinite-dimensional Banach space with smooth partitions of unity then X and X∖ K are diffeomorphic for every weakly compact set K ⊂ X.
Albeverio, Kondratiev, and Röckner have introduced a type of differential geometry, which we call lifted geometry, for the configuration space of any manifold . The name comes from the fact that various elements of the geometry of are constructed via lifting of the corresponding elements of the geometry of . In this note, we construct a general algebraic framework for lifted geometry which can be applied to various “infinite dimensional spaces” associated to . In order to define a lifted...
We study the size of the sets of gradients of bump functions on the Hilbert space , and the related question as to how small the set of tangent hyperplanes to a smooth bounded starlike body in can be. We find that those sets can be quite small. On the one hand, the usual norm of the Hilbert space can be uniformly approximated by smooth Lipschitz functions so that the cones generated by the ranges of its derivatives have empty interior. This implies that there are smooth Lipschitz bumps...