The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

On the Burns-Epstein invariants of spherical CR 3-manifolds

Khoi The Vu (2011)

Annales de l’institut Fourier

In this paper we develop a method to compute the Burns-Epstein invariant of a spherical CR homology sphere, up to an integer, from its holonomy representation. As an application, we give a formula for the Burns-Epstein invariant, modulo an integer, of a spherical CR structure on a Seifert fibered homology sphere in terms of its holonomy representation.

On the L p index of spin Dirac operators on conical manifolds

André Legrand, Sergiu Moroianu (2006)

Studia Mathematica

We compute the index of the Dirac operator on a spin Riemannian manifold with conical singularities, acting from L p ( Σ ) to L q ( Σ ¯ ) with p,q > 1. When 1 + n/p - n/q > 0 we obtain the usual Atiyah-Patodi-Singer formula, but with a spectral cut at (n+1)/2 - n/q instead of 0 in the definition of the eta invariant. In particular we reprove Chou’s formula for the L² index. For 1 + n/p - n/q ≤ 0 the index formula contains an extra term related to the Calderón projector.

Currently displaying 1 – 6 of 6

Page 1