Page 1

Displaying 1 – 2 of 2

Showing per page

Eigenvalue asymptotics for Neumann Laplacian in domains with ultra-thin cusps

Victor Ivrii (1998/1999)

Séminaire Équations aux dérivées partielles

Asymptotics with sharp remainder estimates are recovered for number N ( τ ) of eigenvalues of the generalized Maxwell problem and for related Laplacians which are similar to Neumann Laplacian. We consider domains with ultra-thin cusps (with exp ( - | x | m + 1 ) width ; m > 0 ) and recover eigenvalue asymptotics with sharp remainder estimates.

Equations de Fokker-Planck géométriques II : estimations hypoelliptiques maximales

Gilles Lebeau (2007)

Annales de l’institut Fourier

Nous donnons des résultats analytiques sur les propriétés de régularité du laplacien hypoelliptique de Jean-Michel Bismut et plus généralement sur les opérateurs P de type Fokker-Planck géométrique agissant sur le fibré cotangent Σ = T * X d’une variété riemannienne compacte X . En particulier, nous prouvons un résultat d’hypoellipticité maximale pour P , et nous en déduisons des bornes sur la localisation de ses valeurs spectrales.

Currently displaying 1 – 2 of 2

Page 1