Page 1

Displaying 1 – 3 of 3

Showing per page

Traces and quasi-traces on the Boutet de Monvel algebra

Gerd Grubb, Elmar Schrohe (2004)

Annales de l’institut Fourier

We construct an analogue of Kontsevich and Vishik’s canonical trace for pseudodifferential boundary value problems in the Boutet de Monvel calculus on compact manifolds with boundary. For an operator A in the calculus (of class zero), and an auxiliary operator B , formed of the Dirichlet realization of a strongly elliptic second- order differential operator and an elliptic operator on the boundary, we consider the coefficient C 0 ( A , B ) of ( - λ ) - N in the asymptotic expansion of the resolvent trace Tr ( A ( B - λ ) - N ) (with N large)...

Triplets spectraux pour les variétés à singularité conique isolée

Jean-Marie Lescure (2001)

Bulletin de la Société Mathématique de France

Sur une pseudo-variété de dimension paire à une singularité conique isolée, des triplets spectraux sont construits à partir d’une classe d’opérateurs différentiels elliptiques de type Fuchs, contenant les opérateurs de Dirac à coefficients dans des fibrés plats dans la direction radiale. Ces derniers engendrent, sous une hypothèse raisonnable, le groupe de K -homologie pair tensorisé par de la pseudo-variété et leur caractère de Chern est calculé.

Trivial noncommutative principal torus bundles

Stefan Wagner (2011)

Banach Center Publications

A (smooth) dynamical system with transformation group ⁿ is a triple (A,ⁿ,α), consisting of a unital locally convex algebra A, the n-torus ⁿ and a group homomorphism α: ⁿ → Aut(A), which induces a (smooth) continuous action of ⁿ on A. In this paper we present a new, geometrically oriented approach to the noncommutative geometry of trivial principal ⁿ-bundles based on such dynamical systems, i.e., we call a dynamical system (A,ⁿ,α) a trivial noncommutative principal ⁿ-bundle if each isotypic component...

Currently displaying 1 – 3 of 3

Page 1