The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We construct an analogue of Kontsevich and Vishik’s canonical trace for
pseudodifferential boundary value problems in the Boutet de Monvel calculus on compact
manifolds with boundary. For an operator in the calculus (of class zero), and an
auxiliary operator , formed of the Dirichlet realization of a strongly elliptic second-
order differential operator and an elliptic operator on the boundary, we consider the
coefficient of in the asymptotic expansion of the resolvent
trace (with large)...
Sur une pseudo-variété de dimension paire à une singularité conique isolée, des triplets spectraux sont construits à partir d’une classe d’opérateurs différentiels elliptiques de type Fuchs, contenant les opérateurs de Dirac à coefficients dans des fibrés plats dans la direction radiale. Ces derniers engendrent, sous une hypothèse raisonnable, le groupe de -homologie pair tensorisé par de la pseudo-variété et leur caractère de Chern est calculé.
A (smooth) dynamical system with transformation group ⁿ is a triple (A,ⁿ,α), consisting of a unital locally convex algebra A, the n-torus ⁿ and a group homomorphism α: ⁿ → Aut(A), which induces a (smooth) continuous action of ⁿ on A. In this paper we present a new, geometrically oriented approach to the noncommutative geometry of trivial principal ⁿ-bundles based on such dynamical systems, i.e., we call a dynamical system (A,ⁿ,α) a trivial noncommutative principal ⁿ-bundle if each isotypic component...
Currently displaying 1 –
3 of
3