The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we first use the semiconormed fuzzy integrals in order to extend the definition of the fuzzy expected value (F.E.V.) (Kandel, 1979). We generalize some of the properties due to Kandel with a criticism about his purpose of constraining the F.E.V. to be linear. Finally, a necessary and sufficient condition is given in order to guarantee some linearity properties for any semiconormed fuzzy integral.
Let (Ω, θ, J) be a finitely additive probabilistic space formed by any set Ω, an algebra of subsets θ and a finitely additive probability J. In these conditions, if F belongs to V1(Ω, θ, J) there exists f, element of the completion of L1(Ω, θ, J), such that F(E) = ∫E f dJ for all E of θ and conversely.The integral representation gives sense to the following result, which is the objective of this paper, in terms of the point function: if β is a subalgebra of θ, for every F of V1(Ω, θ, J) there exists...
This article presents an alternative approach to statistical moments within non-standard models and by the help of these moments some limit theorems are reformulated and proved.
The monotone expectation is defined as a functional over fuzzy measures on finite sets. The functional is based on Choquet functional over capacities and its more relevant properties are proved, including the generalization of classical mathematical expectation and Dempster's upper and lower expectations of an evidence. In second place, the monotone expectation is used to define measures of fuzzy sets. Such measures are compared with the ones based on Sugeno integral. Finally, we prove a generalization...
Currently displaying 1 –
6 of
6