Linear Lusin-measurable functionals in case of a continuous cylinder measure
In the present paper the authors prove a weak law of large numbers for multidimensional processes of random elements by means of the random weighting. The results obtained generalize those of Padgett and Taylor.
The paper deals with the following conjecture: if μ is a centered Gaussian measure on a Banach space F,λ > 1, K ⊂ F is a convex, symmetric, closed set, P ⊂ F is a symmetric strip, i.e. P = {x ∈ F : |x'(x)| ≤ 1} for some x' ∈ F', such that μ(K) = μ(P) then μ(λK) ≥ μ(λP). We prove that the conjecture is true under the additional assumption that K is "sufficiently symmetric" with respect to μ, in particular it is true when K is a ball in Hilbert space. As an application we give estimates of Gaussian...
We are dealing with definition of expectation of random elements taking values in metric space given by I. Molchanov and P. Teran in 2006. The approach presented by the authors is quite general and has some interesting properties. We present two kinds of new results:• conditions under which the metric space is isometric with some real Banach space;• conditions which ensure "random identification" property for random elements and almost sure convergence of asymptotic martingales.
We prove that if is the Rademacher system of functions then for any sequence of vectors in any normed linear space F.