Displaying 141 – 160 of 402

Showing per page

Implementación del cálculo de polinomios zonales y aplicaciones en análisis multivariante.

José Rodríguez Avi, Antonio José Sáez Castillo, Antonio Conde Sánchez (2002)

Qüestiió

En este trabajo se describe la implementación de un algoritmo para el cálculo de polinomios zonales, así como dos aplicaciones explícitas de éstos en el ámbito del análisis multivariante. Concretamente, esta implementación permite obtener resultados de sumación aproximados para funciones hipergeométricas de argumento matricial que, a su vez, pueden utilizarse en la génesis de distribuciones multivariantes discretas con frecuencias simétricas. De igual forma, se pone en práctica un conocido resultado...

Integrated Pearson family and orthogonality of the Rodrigues polynomials: A review including new results and an alternative classification of the Pearson system

G. Afendras, N. Papadatos (2015)

Applicationes Mathematicae

An alternative classification of the Pearson family of probability densities is related to the orthogonality of the corresponding Rodrigues polynomials. This leads to a subset of the ordinary Pearson system, the so-called Integrated Pearson Family. Basic properties of this family are discussed and reviewed, and some new results are presented. A detailed comparison between the Integrated Pearson Family and the ordinary Pearson system is presented, including an algorithm that enables one to decide...

Invariance of relative inverse function orderings under compositions of distributions

Magdalena Frąszczak, Jarosław Bartoszewicz (2012)

Applicationes Mathematicae

Bartoszewicz and Benduch (2009) applied an idea of Lehmann and Rojo (1992) to a new setting and used the GTTT transform to define invariance properties and distances of some stochastic orders. In this paper Lehmann and Rojo's idea is applied to the class of models which is based on distributions which are compositions of distribution functions on [0,1] with underlying distributions. Some stochastic orders are invariant with respect to these models.

Inverse distributions: the logarithmic case

Dario Sacchetti (1998)

Commentationes Mathematicae Universitatis Carolinae

In this paper it is proved that the distribution of the logarithmic series is not invertible while it is found to be invertible if corrected by a suitable affinity. The inverse distribution of the corrected logarithmic series is then derived. Moreover the asymptotic behaviour of the variance function of the logarithmic distribution is determined. It is also proved that the variance function of the inverse distribution of the corrected logarithmic distribution has a cubic asymptotic behaviour.

La distribución hipergeométrica como binomial de Poisson.

Jorge Ollero Hinojosa, Héctor Manuel Ramos Romero (1991)

Trabajos de Estadística

En este trabajo demostramos que toda distribución hipergeométrica H(N, X, n) puede ser descrita como suma de pruebas independientes con probabilidades de éxito distintas entre sí. Tal distribución recibe habitualmente el nombre de binomial de Poisson o binomial generalizada.

Linear combination, product and ratio of normal and logistic random variables

Saralees Nadarajah (2005)

Kybernetika

The distributions of linear combinations, products and ratios of random variables arise in many areas of engineering. In this note, the exact distributions of α X + β Y , | X Y | and | X / Y | are derived when X and Y are independent normal and logistic random variables. The normal and logistic distributions have been two of the most popular models for measurement errors in engineering.

Currently displaying 141 – 160 of 402