Displaying 121 – 140 of 201

Showing per page

On fully coupled continuous time random walks

W. Szczotka, P. Żebrowski (2012)

Applicationes Mathematicae

Continuous time random walks with jump sizes equal to the corresponding waiting times for jumps are considered. Sufficient conditions for the weak convergence of such processes are established and the limiting processes are identified. Furthermore one-dimensional distributions of the limiting processes are given under an additional assumption.

On measure-preserving transformations and doubly stationary symmetric stable processes

A. Gross, A. Weron (1995)

Studia Mathematica

In a 1987 paper, Cambanis, Hardin and Weron defined doubly stationary stable processes as those stable processes which have a spectral representation which is itself stationary, and they gave an example of a stationary symmetric stable process which they claimed was not doubly stationary. Here we show that their process actually had a moving average representation, and hence was doubly stationary. We also characterize doubly stationary processes in terms of measure-preserving regular set isomorphisms...

On Mieshalkin-Rogozin theorem and some properties of the second kind beta distribution

Włodzimierz Krysicki (2000)

Discussiones Mathematicae Probability and Statistics

The decomposition of the r.v. X with the beta second kind distribution in the form of finite (formula (9), Theorem 1) and infinity products (formula (17), Theorem 2 and form (21), Theorem 3) are presented. Next applying Mieshalkin - Rogozin theorem we receive the estimation of the difference of two c.d.f. F(x) and G(x) when sup|f(t) - g(t)| is known, improving the result of Gnedenko - Kolmogorov (formulae (23) and (24)).

On some limit distributions for geometric random sums

Marek T. Malinowski (2008)

Discussiones Mathematicae Probability and Statistics

We define and give the various characterizations of a new subclass of geometrically infinitely divisible random variables. This subclass, called geometrically semistable, is given as the set of all these random variables which are the limits in distribution of geometric, weighted and shifted random sums. Introduced class is the extension of, considered until now, classes of geometrically stable [5] and geometrically strictly semistable random variables [10]. All the results can be straightforward...

On the Bennett–Hoeffding inequality

Iosif Pinelis (2014)

Annales de l'I.H.P. Probabilités et statistiques

The well-known Bennett–Hoeffding bound for sums of independent random variables is refined, by taking into account positive-part third moments, and at that significantly improved by using, instead of the class of all increasing exponential functions, a much larger class of generalized moment functions. The resulting bounds have certain optimality properties. The results can be extended in a standard manner to (the maximal functions of) (super)martingales. The proof of the main result relies on an...

On the infinite divisibility of scale mixtures of symmetric α-stable distributions, α ∈ (0,1]

Grażyna Mazurkiewicz (2010)

Banach Center Publications

The paper contains a new and elementary proof of the fact that if α ∈ (0,1] then every scale mixture of a symmetric α-stable probability measure is infinitely divisible. This property is known to be a consequence of Kelker's result for the Cauchy distribution and some nontrivial properties of completely monotone functions. It is known that this property does not hold for α = 2. The problem discussed in the paper is still open for α ∈ (1,2).

Optimal transportation for multifractal random measures and applications

Rémi Rhodes, Vincent Vargas (2013)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we study optimal transportation problems for multifractal random measures. Since these measures are much less regular than optimal transportation theory requires, we introduce a new notion of transportation which is intuitively some kind of multistep transportation. Applications are given for construction of multifractal random changes of times and to the existence of random metrics, the volume forms of which coincide with the multifractal random measures.

Currently displaying 121 – 140 of 201