On a characterization of symmetric stable processes.
This paper studies a two-variable zeta function attached to an algebraic number field , introduced by van der Geer and Schoof, which is based on an analogue of the Riemann-Roch theorem for number fields using Arakelov divisors. When this function becomes the completed Dedekind zeta function of the field . The function is a meromorphic function of two complex variables with polar divisor , and it satisfies the functional equation . We consider the special case , where for this function...
Geometric random sums arise in various applied problems like physics, biology, economics, risk processes, stochastic finance, queuing theory, reliability models, regenerative models, etc. Their asymptotic behaviors with convergence rates become a big subject of interest. The main purpose of this paper is to study the asymptotic behaviors of normalized geometric random sums of independent and identically distributed random variables via Gnedenko's Transfer Theorem. Moreover, using the Zolotarev probability...
Continuous time random walks with jump sizes equal to the corresponding waiting times for jumps are considered. Sufficient conditions for the weak convergence of such processes are established and the limiting processes are identified. Furthermore one-dimensional distributions of the limiting processes are given under an additional assumption.
In a 1987 paper, Cambanis, Hardin and Weron defined doubly stationary stable processes as those stable processes which have a spectral representation which is itself stationary, and they gave an example of a stationary symmetric stable process which they claimed was not doubly stationary. Here we show that their process actually had a moving average representation, and hence was doubly stationary. We also characterize doubly stationary processes in terms of measure-preserving regular set isomorphisms...
The decomposition of the r.v. X with the beta second kind distribution in the form of finite (formula (9), Theorem 1) and infinity products (formula (17), Theorem 2 and form (21), Theorem 3) are presented. Next applying Mieshalkin - Rogozin theorem we receive the estimation of the difference of two c.d.f. F(x) and G(x) when sup|f(t) - g(t)| is known, improving the result of Gnedenko - Kolmogorov (formulae (23) and (24)).
We define and give the various characterizations of a new subclass of geometrically infinitely divisible random variables. This subclass, called geometrically semistable, is given as the set of all these random variables which are the limits in distribution of geometric, weighted and shifted random sums. Introduced class is the extension of, considered until now, classes of geometrically stable [5] and geometrically strictly semistable random variables [10]. All the results can be straightforward...
The well-known Bennett–Hoeffding bound for sums of independent random variables is refined, by taking into account positive-part third moments, and at that significantly improved by using, instead of the class of all increasing exponential functions, a much larger class of generalized moment functions. The resulting bounds have certain optimality properties. The results can be extended in a standard manner to (the maximal functions of) (super)martingales. The proof of the main result relies on an...
The paper contains a new and elementary proof of the fact that if α ∈ (0,1] then every scale mixture of a symmetric α-stable probability measure is infinitely divisible. This property is known to be a consequence of Kelker's result for the Cauchy distribution and some nontrivial properties of completely monotone functions. It is known that this property does not hold for α = 2. The problem discussed in the paper is still open for α ∈ (1,2).