Displaying 21 – 40 of 1158

Showing per page

A generalized bivariate lifetime distribution based on parallel-series structures

Vahideh Mohtashami-Borzadaran, Mohammad Amini, Jafar Ahmadi (2019)

Kybernetika

In this paper, a generalized bivariate lifetime distribution is introduced. This new model is constructed based on a dependent model consisting of two parallel-series systems which have a random number of parallel subsystems with fixed components connected in series. The probability that one system fails before the other one is measured by using competing risks. Using the extreme-value copulas, the dependence structure of the proposed model is studied. Kendall's tau, Spearman's rho and tail dependences...

A generalized Kahane-Khinchin inequality

S. Favorov (1998)

Studia Mathematica

The inequality ʃ l o g | a n e 2 π i φ n | d φ 1 d φ n C l o g ( | a n | 2 ) 1 / 2 with an absolute constant C, and similar ones, are extended to the case of a n belonging to an arbitrary normed space X and an arbitrary compact group of unitary operators on X instead of the operators of multiplication by e 2 π i φ .

A geometric approach to correlation inequalities in the plane

A. Figalli, F. Maggi, A. Pratelli (2014)

Annales de l'I.H.P. Probabilités et statistiques

By elementary geometric arguments, correlation inequalities for radially symmetric probability measures are proved in the plane. Precisely, it is shown that the correlation ratio for pairs of width-decreasing sets is minimized within the class of infinite strips. Since open convex sets which are symmetric with respect to the origin turn out to be width-decreasing sets, Pitt’s Gaussian correlation inequality (the two-dimensional case of the long-standing Gaussian correlation conjecture) is derived...

A geometry on the space of probabilities (II). Projective spaces and exponential families.

Henryk Gzyl, Lázaro Recht (2006)

Revista Matemática Iberoamericana

In this note we continue a theme taken up in part I, see [Gzyl and Recht: The geometry on the class of probabilities (I). The finite dimensional case. Rev. Mat. Iberoamericana 22 (2006), 545-558], namely to provide a geometric interpretation of exponential families as end points of geodesics of a non-metric connection in a function space. For that we characterize the space of probability densities as a projective space in the class of strictly positive functions, and these will be regarded as a...

Currently displaying 21 – 40 of 1158