Page 1 Next

Displaying 1 – 20 of 37

Showing per page

Random noise and perturbation of copulas

Radko Mesiar, Ayyub Sheikhi, Magda Komorníková (2019)

Kybernetika

For a random vector ( X , Y ) characterized by a copula C X , Y we study its perturbation C X + Z , Y characterizing the random vector ( X + Z , Y ) affected by a noise Z independent of both X and Y . Several examples are added, including a new comprehensive parametric copula family 𝒞 k k [ - , ] .

Réarrangement, inégalités maximales et théorèmes ergodiques fractionnaires

Michel Broise, Yves Déniel, Yves Derriennic (1989)

Annales de l'institut Fourier

Étant donné un semi-flot mesurable ( θ x ) x + d préservant une mesure de probabilité μ sur un espace Ω , nous considérons les moyennes ergodiques t - d + d ϕ ( x / t ) f θ x d x ϕ est un “poids” à support compact sur + d , c’est-à-dire que ϕ vérifie ϕ 0 et ϕ ( x ) d x = 1 . Nous démontrons la convergence p.p. de ces moyennes quand t + si f appartient à l’espace de Lorentz défini par le poids ϕ * qui est le réarrangé décroissant de ϕ . En particulier, pour d = 1 , on obtient la convergence p.p. des moyennes de Césarò d’ordre α

Remarks on Catalan and super-Catalan numbers

Anna Dorota Krystek, Łukasz Jan Wojakowski (2011)

Banach Center Publications

In this article we discuss the Catalan and super-Catalan (or Schröder) numbers. We start with some combinatorial interpretations of those numbers. We study two probability measures in the context of free probability, one whose moments are super-Catalan, and another, whose even moments are super-Catalan and odd moments are zero. With the use of the latter we also show some new formulae for evaluation of the Catalans in terms of super-Catalans and vice-versa.

Currently displaying 1 – 20 of 37

Page 1 Next