Page 1 Next

Displaying 1 – 20 of 28

Showing per page

Basic bounds of Fréchet classes

Jaroslav Skřivánek (2014)

Kybernetika

Algebraic bounds of Fréchet classes of copulas can be derived from the fundamental attributes of the associated copulas. A minimal system of algebraic bounds and related basic bounds can be defined using properties of pointed convex polyhedral cones and their relationship with non-negative solutions of systems of linear homogeneous Diophantine equations, largely studied in Combinatorics. The basic bounds are an algebraic improving of the Fréchet-Hoeffding bounds. We provide conditions of compatibility...

Bernstein inequality for the parameter of the pth order autoregressive process AR(p)

Samir Benaissa (2006)

Applicationes Mathematicae

The autoregressive process takes an important part in predicting problems leading to decision making. In practice, we use the least squares method to estimate the parameter θ̃ of the first-order autoregressive process taking values in a real separable Banach space B (ARB(1)), if it satisfies the following relation: X ̃ t = θ ̃ X ̃ t - 1 + ε ̃ t . In this paper we study the convergence in distribution of the linear operator I ( θ ̃ T , θ ̃ ) = ( θ ̃ T - θ ̃ ) θ ̃ T - 2 for ||θ̃|| > 1 and so we construct inequalities of Bernstein type for this operator.

Binary segmentation and Bonferroni-type bounds

Michal Černý (2011)

Kybernetika

We introduce the function Z ( x ; ξ , ν ) : = - x ϕ ( t - ξ ) · Φ ( ν t ) d t , where ϕ and Φ are the pdf and cdf of N ( 0 , 1 ) , respectively. We derive two recurrence formulas for the effective computation of its values. We show that with an algorithm for this function, we can efficiently compute the second-order terms of Bonferroni-type inequalities yielding the upper and lower bounds for the distribution of a max-type binary segmentation statistic in the case of small samples (where asymptotic results do not work), and in general for max-type random variables...

Bivariate copulas, norms and non-exchangeability

Pier Luigi Papini (2015)

Dependence Modeling

The present paper is related to the study of asymmetry for copulas by introducing functionals based on different norms for continuous variables. In particular, we discuss some facts concerning asymmetry and we point out some flaws occurring in the recent literature dealing with this matter.

Bivariate copulas: Transformations, asymmetry and measures of concordance

Sebastian Fuchs, Klaus D. Schmidt (2014)

Kybernetika

The present paper introduces a group of transformations on the collection of all bivariate copulas. This group contains an involution which is particularly useful since it provides (1) a criterion under which a given symmetric copula can be transformed into an asymmetric one and (2) a condition under which for a given copula the value of every measure of concordance is equal to zero. The group also contains a subgroup which is of particular interest since its four elements preserve symmetry, the...

Bounded double square functions

Jill Pipher (1986)

Annales de l'institut Fourier

We extend some recent work of S. Y. Chang, J. M. Wilson and T. Wolff to the bidisc. For f L l o c 1 ( R 2 ) , we determine the sharp order of local integrability obtained when the square function of f is in L . The Calderón-Torchinsky decomposition reduces the problem to the case of double dyadic martingales. Here we prove a vector-valued form of an inequality for dyadic martingales that yields the sharp dependence on p of C p in f p C p S f p .

Bounds and asymptotic expansions for the distribution of the Maximum of a smooth stationary Gaussian process

Jean-Marc Azaïs, Christine Cierco-Ayrolles, Alain Croquette (2010)

ESAIM: Probability and Statistics

This paper uses the Rice method [18] to give bounds to the distribution of the maximum of a smooth stationary Gaussian process. We give simpler expressions of the first two terms of the Rice series [3,13] for the distribution of the maximum. Our main contribution is a simpler form of the second factorial moment of the number of upcrossings which is in some sense a generalization of Steinberg et al.'s formula ([7] p. 212). Then, we present a numerical application and asymptotic expansions...

Currently displaying 1 – 20 of 28

Page 1 Next