The variogram and estimation error in connection with the assessment of continuous streams.
The last few years have witnessed important new developments in the theory and practice of pattern classification. We intend to survey some of the main new ideas that have led to these recent results.
The last few years have witnessed important new developments in the theory and practice of pattern classification. We intend to survey some of the main new ideas that have led to these recent results.
We prove that for s < 0, s-concave measures on ℝⁿ exhibit thin-shell concentration similar to the log-concave case. This leads to a Berry-Esseen type estimate for most of their one-dimensional marginal distributions. We also establish sharp reverse Hölder inequalities for s-concave measures.
It is proved that the best constant factor in the Rademacher-Gaussian tail comparison is between two explicitly defined absolute constants c1 and c2 such that c2≈1.01 c1. A discussion of relative merits of this result versus limit theorems is given.
Transformations of copulas by means of increasing bijections on the unit interval and attractors of copulas are discussed. The invariance of copulas under such transformations as well as the relationship to maximum attractors and Archimax copulas is investigated.
For stochastic differential equations of pure jumps, though the Poincaré inequality does not hold in general, we show that W1H transportation inequalities hold for its invariant probability measure and for its process-level law on right continuous paths space in the L1-metric or in uniform metrics, under the dissipative condition. Several applications to concentration inequalities are given.
We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasserstein distance with an explicit exponential rate. We also prove a propagation of chaos property for an associated particle system, and give rates on the approximation of the solution by the particle system. Finally, a transportation inequality...
This paper presents different approaches, based on functional inequalities, to study the speed of convergence in total variation distance of ergodic diffusion processes with initial law satisfying a given integrability condition. To this end, we give a general upper bound “à la Pinsker” enabling us to study our problem firstly via usual functional inequalities (Poincaré inequality, weak Poincaré,…) and truncation procedure, and secondly through the introduction of new functional inequalities ....
A properly measurable set (where are Polish spaces and is the space of Borel probability measures on ) is considered. Given a probability distribution the paper treats the problem of the existence of -valued random vector for which and -almost surely that possesses moreover some other properties such as “ has the maximal possible support” or “’s are extremal...