Previous Page 7

Displaying 121 – 131 of 131

Showing per page

Symmetric partitions and pairings

Ferenc Oravecz (2000)

Colloquium Mathematicae

The lattice of partitions and the sublattice of non-crossing partitions of a finite set are important objects in combinatorics. In this paper another sublattice of the partitions is investigated, which is formed by the symmetric partitions. The measure whose nth moment is given by the number of non-crossing symmetric partitions of n elements is determined explicitly to be the "symmetric" analogue of the free Poisson law.

Symmetrization of probability measures, pushforward of order 2 and the Boolean convolution

Wojciech Młotkowski, Noriyoshi Sakuma (2011)

Banach Center Publications

We study relations between the Boolean convolution and the symmetrization and the pushforward of order 2. In particular we prove that if μ₁,μ₂ are probability measures on [0,∞) then ( μ μ ) s = μ s μ s and if ν₁,ν₂ are symmetric then ( ν ν ) ( 2 ) = ν ( 2 ) ν ( 2 ) . Finally we investigate necessary and sufficient conditions under which the latter equality holds.

Currently displaying 121 – 131 of 131

Previous Page 7