Renewal theory in dimensions II
In this paper, we consider a new framework where two types of data are available: experimental data Y1,...,Yn supposed to be i.i.d from Y and outputs from a simulated reduced model. We develop a procedure for parameter estimation to characterize a feature of the phenomenon Y. We prove a risk bound qualifying the proposed procedure in terms of the number of experimental data n, reduced model complexity and computing budget m. The method we present is general enough to cover a wide range of applications....
We prove a strong law of large numbers for a one-dimensional random walk in a dynamic random environment given by a supercritical contact process in equilibrium. The proof uses a coupling argument based on the observation that the random walk eventually gets trapped inside the union of space–time cones contained in the infection clusters generated by single infections. In the case where the local drifts of the random walk are smaller than the speed at which infection clusters grow, the random walk...
Regression and scale invariant -test procedures are developed for detection of structural changes in linear regression model. Their limit properties are studied under the null hypothesis.
We study the fluctuations around non degenerate attractors of the empirical measure under mean field Gibbs measures. We prove that a mild change of the densities of these measures does not affect the central limit theorems. We apply this result to generalize the assumptions of [3] and [12] on the densities of the Gibbs measures to get precise Laplace estimates.