Grandes déviations pour les mesures de Gibbs lorsque la température tend vers zéro
We study Karhunen-Loève expansions of the process(X t(α))t∈[0,T) given by the stochastic differential equation , with the initial condition X 0(α) = 0, where α > 0, T ∈ (0, ∞), and (B t)t≥0 is a standard Wiener process. This process is called an α-Wiener bridge or a scaled Brownian bridge, and in the special case of α = 1 the usual Wiener bridge. We present weighted and unweighted Karhunen-Loève expansions of X (α). As applications, we calculate the Laplace transform and the distribution function...
2000 Mathematics Subject Classification: 62G07, 60F10.In this paper we prove large and moderate deviations principles for the recursive kernel estimator of a probability density function and its partial derivatives. Unlike the density estimator, the derivatives estimators exhibit a quadratic behaviour not only for the moderate deviations scale but also for the large deviations one. We provide results both for the pointwise and the uniform deviations.