Calcul des probabilités - Théorème des grands écarts et théorème de la limite centrale pour certains produits de matrices aléatoires
In this paper, we develop bounds on the distribution function of the empirical mean for general ergodic Markov processes having a spectral gap. Our approach is based on the perturbation theory for linear operators, following the technique introduced by Gillman.
In this paper, we develop bounds on the distribution function of the empirical mean for general ergodic Markov processes having a spectral gap. Our approach is based on the perturbation theory for linear operators, following the technique introduced by Gillman.
We study the rate of concentration of a Brownian bridge in time one around the corresponding geodesical segment on a Cartan-Hadamard manifold with pinched negative sectional curvature, when the distance between the two extremities tends to infinity. This improves on previous results by A. Eberle, and one of us . Along the way, we derive a new asymptotic estimate for the logarithmic derivative of the heat kernel on such manifolds, in bounded time and with one space parameter...
In this paper, we prove a conditional principle of Gibbs type for random weighted measures of the form , being a sequence of i.i.d. real random variables. Our work extends the preceding results of Gamboa and Gassiat (1997), in allowing to consider thin constraints. Transportation-like ideas are used in the proof.
In this paper, we prove a conditional principle of Gibbs type for random weighted measures of the form , ((Zi)i being a sequence of i.i.d. real random variables. Our work extends the preceding results of Gamboa and Gassiat (1997), in allowing to consider thin constraints. Transportation-like ideas are used in the proof.
Let Tn be a Studentized U-statistic. It is proved that a Cramér type moderate deviation P(Tn ≥ x)/(1 − Φ(x)) → 1 holds uniformly in x ∈ [0, o(n1/6)) when the kernel satisfies some regular conditions.
Let Tn be a Studentized U-statistic. It is proved that a Cramér type moderate deviation P(Tn ≥ x)/(1 − Φ(x)) → 1 holds uniformly in x∈ [0, o(n1/6)) when the kernel satisfies some regular conditions.