PDE-viscosity solution approach to some problems of large deviations
Let denote the iterated partial sums. That is, , where . Assuming are integrable, zero-mean, i.i.d. random variables, we show that the persistence probabilities with (and whenever is symmetric). The converse inequality holds whenever the non-zero is bounded or when it has only finite third moment and in addition is squared integrable. Furthermore, for any non-degenerate squared integrable, i.i.d., zero-mean . In contrast, we show that for any there exist integrable, zero-mean...
Consider a strong Markov process in continuous time, taking values in some Polish state space. Recently, Douc et al. [Stoc. Proc. Appl. 119, (2009) 897–923] introduced verifiable conditions in terms of a supermartingale property implying an explicit control of modulated moments of hitting times. We show how this control can be translated into a control of polynomial moments of abstract regeneration times which are obtained by using the regeneration method of Nummelin, extended to the time-continuous...
We consider the parabolic Anderson model, the Cauchy problem for the heat equation with random potential in ℤd. We use i.i.d. potentials ξ:ℤd→ℝ in the third universality class, namely the class of almost bounded potentials, in the classification of van der Hofstad, König and Mörters [Commun. Math. Phys.267 (2006) 307–353]. This class consists of potentials whose logarithmic moment generating function is regularly varying with parameter γ=1, but do not belong to the class of so-called double-exponentially...
Let be a polynomial of degree without roots of multiplicity or . Erdős conjectured that, if satisfies the necessary local conditions, then is free of th powers for infinitely many primes . This is proved here for all with sufficiently high entropy.The proof serves to demonstrate two innovations: a strong repulsion principle for integer points on curves of positive genus, and a number-theoretical analogue of Sanov’s theorem from the theory of large deviations.
We find precise small deviation asymptotics with respect to the Hilbert norm for some special Gaussian processes connected to two regression schemes studied by MacNeill and his coauthors. In addition, we also obtain precise small deviation asymptotics for the detrended Brownian motion and detrended Slepian process.
Functionals of spatial point process often satisfy a weak spatial dependence condition known as stabilization. In this paper we prove process level moderate deviation principles (MDP) for such functionals, which is a level-3 result for empirical point fields as well as a level-2 result for empirical point measures. The level-3 rate function coincides with the so-called specific information. We show that the general result can be applied to prove MDPs for various particular functionals, including...
In this paper, we prove a process-level, also known as level-3 large deviation principle for a very general class of simple point processes, i.e. nonlinear Hawkes process, with a rate function given by the process-level entropy, which has an explicit formula.
We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.