On the small deviation problem for some iterated processes.
Aurzada, Frank, Lifshits, Mikhail (2009)
Electronic Journal of Probability [electronic only]
J. Bulatovic (1978)
Publications de l'Institut Mathématique [Elektronische Ressource]
Albert Benassi (1979)
Annales de l'I.H.P. Probabilités et statistiques
Guy Mélard (1978)
Annales de l'I.H.P. Probabilités et statistiques
Jacques Istas, Gabriel Lang (1997)
Annales de l'I.H.P. Probabilités et statistiques
M. N. Lukić (1989)
Matematički Vesnik
Jiří Michálek (1987)
Kybernetika
Swift, Randall J. (1995)
Journal of Applied Mathematics and Stochastic Analysis
Aleksander Weron (1980)
Annales de l'I.H.P. Probabilités et statistiques
Swift, Randall J. (2000)
Portugaliae Mathematica
Philippe Berthet, Mikhail Lifshits (2002)
Annales de l'I.H.P. Probabilités et statistiques
J. Bulatovic, S. Janjic (1980)
Publications de l'Institut Mathématique [Elektronische Ressource]
Jiří Michálek (1986)
Kybernetika
A. Makagon, H. Salehi (1987)
Studia Mathematica
Mitrović, S. (1986)
Publications de l'Institut Mathématique. Nouvelle Série
Chobanyan, Sergei, Levental, Shlomo, Salehi, Habib (2005)
Electronic Communications in Probability [electronic only]
Yukuang Chiu (1997)
Séminaire de probabilités de Strasbourg
Borisova, Galina (2003)
Serdica Mathematical Journal
2000 Mathematics Subject Classification: Primary 47A48, Secondary 60G12In this work we present the operators Aγ = γA + -γA with Re γ = 1/2 in the case of an operator A from the class of nondissipative operators generating nonselfadjoint curves, whose correlation functions have a limit as t → ±∞. The asympthotics of the stationary curves e^(itAγ)f as t → ±∞ onto the absolutely continuous subspace of Aγ are obtained. These asymptotics and the obtained asymptotics in [9] of the nondissipative curves...
Okoroafor, A.C. (2008)
Journal of Applied Mathematics and Stochastic Analysis
Kirchev, Kiril, Borisova, Galina (2005)
Serdica Mathematical Journal
2000 Mathematics Subject Classification: Primary 47A48, Secondary 60G12.In this paper classes of K^r -operators are considered – the classes of bounded and unbounded operators A with equal domains of A and A*, finite dimensional imaginary parts and presented as a coupling of a dissipative operator and an antidissipative one with real absolutely continuous spectra and the class of unbounded dissipative K^r -operators A with different domains of A and A* and with real absolutely continuous spectra....