α-time fractional brownian motion: PDE connections and local times
For 0 < α ≤ 2 and 0 < H < 1, an α-time fractional Brownian motion is an iterated process Z = {Z(t) = W(Y(t)), t ≥ 0} obtained by taking a fractional Brownian motion {W(t), t ∈ ℝ} with Hurst index 0 < H < 1 and replacing the time parameter with a strictly α-stable Lévy process {Y(t), t ≥ 0} in ℝ independent of {W(t), t ∈ R}. It is shown that such processes have natural connections to partial differential equations and, when Y is a stable subordinator, can arise...