On conditions for SLLN for martingales with identically distributed increments.
In this paper we prove a representation result for essentially bounded multivalued martingales with nonempty closed convex and bounded values in a real separable Banach space. Then we turn our attention to the interplay between multimeasures and multivalued Riesz representations. Finally, we give the multivalued Radon-Nikodym property.
The well-known Bennett–Hoeffding bound for sums of independent random variables is refined, by taking into account positive-part third moments, and at that significantly improved by using, instead of the class of all increasing exponential functions, a much larger class of generalized moment functions. The resulting bounds have certain optimality properties. The results can be extended in a standard manner to (the maximal functions of) (super)martingales. The proof of the main result relies on an...
We study the almost sure asymptotic behaviour of stochastic approximation algorithms for the search of zero of a real function. The quadratic strong law of large numbers is extended to the powers greater than one. In other words, the convergence of moments in the almost sure central limit theorem (ASCLT) is established. As a by-product of this convergence, one gets another proof of ASCLT for stochastic approximation algorithms. The convergence result is applied to several examples as estimation...
We investigate convergence and divergence of specific subsequences of partial sums with respect to the Walsh system on martingale Hardy spaces. By using these results we obtain a relationship of the ratio of convergence of the partial sums of the Walsh series and the modulus of continuity of the martingale. These conditions are in a sense necessary and sufficient.
Capital and lower-case approximations of the expected value of a class of smooth functions of the normalized random partial sums of dependent random variables by the expectation of the corresponding functions of Gaussian random variables are established. The same types of approximation are also obtained for dependent random vectors. This generalizes and improves previous results of the author (1980) and Rychlik and Szynal (1979).
Let N ≥ 2 be a given integer. Suppose that is a martingale difference sequence with values in and let be a deterministic sequence of signs. The paper contains the proof of the estimate . It is shown that this result is asymptotically sharp in the sense that the least constant in the above estimate satisfies . The novelty in the proof is the explicit verification of the ζ-convexity of the space .
Recently, there has been a growing interest in optimization problems associated with the arbitrage pricing of derivative securities in imperfect markets (in particular, in models with transaction costs). In this paper, we examine the valuation and hedging of European claims in the multiplicative binomial model proposed by Cox, Ross and Rubinstein [5] (the CRR model), in the presence of proportional transaction costs. We focus on the optimality of replication; in particular, we provide sufficient...