The distribution of trees.
On développe une approche générale du théorème limite centrale presque-sûre pour les martingales vectorielles quasi-continues à gauche convenablement normalisées dont on dégage une extension quadratique et un nouveau théorème de la limite centrale. L'application de ce résultat à l'estimation de la variance d'un processus à accroissements indépendants et stationnaires illustre l'usage qu'on peut en faire en statistique.
Given a Hilbert space valued martingale (Mₙ), let (M*ₙ) and (Sₙ(M)) denote its maximal function and square function, respectively. We prove that 𝔼|Mₙ| ≤ 2𝔼 Sₙ(M), n=0,1,2,..., 𝔼 M*ₙ ≤ 𝔼 |Mₙ| + 2𝔼 Sₙ(M), n=0,1,2,.... The first inequality is sharp, and it is strict in all nontrivial cases.