Displaying 401 – 420 of 589

Showing per page

Random walks on the affine group of local fields and of homogeneous trees

Donald I. Cartwright, Vadim A. Kaimanovich, Wolfgang Woess (1994)

Annales de l'institut Fourier

The affine group of a local field acts on the tree 𝕋 ( 𝔉 ) (the Bruhat-Tits building of GL ( 2 , 𝔉 ) ) with a fixed point in the space of ends 𝕋 ( F ) . More generally, we define the affine group Aff ( 𝔉 ) of any homogeneous tree 𝕋 as the group of all automorphisms of 𝕋 with a common fixed point in 𝕋 , and establish main asymptotic properties of random products in Aff ( 𝔉 ) : (1) law of large numbers and central limit theorem; (2) convergence to 𝕋 and solvability of the Dirichlet problem at infinity; (3) identification of the Poisson boundary...

Recorridos aleatorios simples en tiempo continuo.

Ricardo Vélez Ibarrola (1983)

Trabajos de Estadística e Investigación Operativa

The properties of a certain generalization of simple random walk to continuous time are analyzed in this paper. After the definition, its transition probabilities, and the differential equations satisfied by those, are obtained. Under some conditions, the convergence of this random walk to a Wiener process is then established. Finally, absorption probabilities and mean times until absorption are calculated, giving some insight into the behaviour of the process.

Refinement type equations: sources and results

Rafał Kapica, Janusz Morawiec (2013)

Banach Center Publications

It has been proved recently that the two-direction refinement equation of the form f ( x ) = n c n , 1 f ( k x - n ) + n c n , - 1 f ( - k x - n ) can be used in wavelet theory for constructing two-direction wavelets, biorthogonal wavelets, wavelet packages, wavelet frames and others. The two-direction refinement equation generalizes the classical refinement equation f ( x ) = n c f ( k x - n ) , which has been used in many areas of mathematics with important applications. The following continuous extension of the classical refinement equation f ( x ) = c ( y ) f ( k x - y ) d y has also various interesting applications....

Reinforced walk on graphs and neural networks

Józef Myjak, Ryszard Rudnicki (2008)

Studia Mathematica

A directed-edge-reinforced random walk on graphs is considered. Criteria for the walk to end up in a limit cycle are given. Asymptotic stability of some neural networks is shown.

Currently displaying 401 – 420 of 589