Capacité et théorie du renouvellement. I
Page 1 Next
C. Sunyach (1981)
Bulletin de la Société Mathématique de France
P. Baldi (1981)
Annales de l'I.H.P. Probabilités et statistiques
C. Frémond, M. Sueur-Pontier (1971)
Annales de l'I.H.P. Probabilités et statistiques
Neammanee, K. (2003)
International Journal of Mathematics and Mathematical Sciences
Jana Klicnarová (2007)
Commentationes Mathematicae Universitatis Carolinae
We consider a sequence of stochastic processes with continuous trajectories and we show conditions for the tightness of the sequence in the Hölder space with a parameter .
Nadine Guillotin-Plantard, Clémentine Prieur (2010)
ESAIM: Probability and Statistics
We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a -valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics3 (2003) 477–497]. An application to parametric estimation by random sampling is also provided.
Duheille-Bienvenüe, Frédérique, Guillotin-Plantard, Nadine (2003)
Electronic Communications in Probability [electronic only]
Léonard Gallardo (1996)
Annales de l'I.H.P. Probabilités et statistiques
Müller, Thomas W. (2006)
Séminaire Lotharingien de Combinatoire [electronic only]
I.I. Kotlarski, W.E. Hinds (1980)
Aequationes mathematicae
Tomasz Dubejko (1996/1997)
Séminaire de théorie spectrale et géométrie
Cox, Alexander M.G., Obloj, Jan K. (2008)
Electronic Journal of Probability [electronic only]
Agnieszka Jurlewicz, Mark M. Meerschaert, Hans-Peter Scheffler (2011)
Studia Mathematica
In a continuous time random walk (CTRW), a random waiting time precedes each random jump. The CTRW model is useful in physics, to model diffusing particles. Its scaling limit is a time-changed process, whose densities solve an anomalous diffusion equation. This paper develops limit theory and governing equations for cluster CTRW, in which a random number of jumps cluster together into a single jump. The clustering introduces a dependence between the waiting times and jumps that significantly affects...
Yann Ollivier (2005)
Annales de l’institut Fourier
The cogrowth exponent of a group controls the random walk spectrum. We prove that for a generic group (in the density model) this exponent is arbitrarily close to that of a free group. Moreover, this exponent is stable under random quotients of torsion-free hyperbolic groups.
Banagl, Markus (2006)
Experimental Mathematics
Yves Colin de Verdière (1986/1987)
Séminaire de théorie spectrale et géométrie
Evgueni I. Gordienko (2005)
Kybernetika
Let be two sequences of i.i.d. random vectors with values in and , , . Assuming that , , and the existence of a density of satisfying the certain conditions we prove the following inequalities: where and are the total variation and Zolotarev’s metrics, respectively.
Gao, F., Hannig, J., Torcaso, F. (2003)
Electronic Journal of Probability [electronic only]
Kruglov, Victor M. (2010)
Journal of Probability and Statistics
Xing-Cai Zhou, Jin-Guan Lin (2014)
Applications of Mathematics
Let be a doubly infinite sequence of identically distributed -mixing random variables, and an absolutely summable sequence of real numbers. We prove the complete -order moment convergence for the partial sums of moving average processes based on the sequence of -mixing random variables under some suitable conditions. These results generalize and complement earlier results.
Page 1 Next