Loading [MathJax]/extensions/MathZoom.js
The longitudinal regression model where is the th measurement of the th subject at random time , is the regression function, is a predictable covariate process observed at time and is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth -estimator of unknown parameter .
In the present paper we consider the problem of fitting parametric spatial Cox point process models. We concentrate on the moment estimation methods based on the second order characteristics of the point process in question. These methods represent a simulation-free faster-to-compute alternative to the computationally intense maximum likelihood estimation. We give an overview of the available methods, discuss their properties and applicability. Further we present results of a simulation study in...
Currently displaying 1 –
3 of
3