Valeurs extrémales de suites stationnaires de variables aléatoires m-dépendantes
Herein, we develop a backward stochastic differential equation (BSDE) valuation of securities with default risk. Consequently, the optimal recovery problem with quasi-linear utility functions is discussed with the help of the stochastic maximum principle. Finally, two important examples: the exponential and power utility cases are studied and their business implications are considered.
This paper addresses the two-asset Merton model for option pricing represented by non-stationary integro-differential equations with two state variables. The drawback of most classical methods for solving these types of equations is that the matrices arising from discretization are full and ill-conditioned. In this paper, we first transform the equation using logarithmic prices, drift removal, and localization. Then, we apply the Galerkin method with a recently proposed orthogonal cubic spline-wavelet...
In this paper, the variance-constrained finite-horizon filtering problem is investigated for a class of time-varying nonlinear system under muti-rate communication network and stochastic protocol (SP). The stochastic protocol is employed to determine which sensor obtains access to the muti-rate communication network in order to relieve communication burden. A novel mapping technology is applied to characterize the randomly switching behavior of the data transmission resulting from the utilization...
A variational formula for positive functionals of a Poisson random measure and brownian motion is proved. The formula is based on the relative entropy representation for exponential integrals, and can be used to prove large deviation type estimates. A general large deviation result is proved, and illustrated with an example.
The vector-valued T(1) theorem due to Figiel, and a certain square function estimate of Bourgain for translations of functions with a limited frequency spectrum, are two cornerstones of harmonic analysis in UMD spaces. In this paper, a simplified approach to these results is presented, exploiting Nazarov, Treil and Volberg's method of random dyadic cubes, which allows one to circumvent the most subtle parts of the original arguments.