Page 1

Displaying 1 – 4 of 4

Showing per page

Invariance of Poisson measures under random transformations

Nicolas Privault (2012)

Annales de l'I.H.P. Probabilités et statistiques

We prove that Poisson measures are invariant under (random) intensity preserving transformations whose finite difference gradient satisfies a cyclic vanishing condition. The proof relies on moment identities of independent interest for adapted and anticipating Poisson stochastic integrals, and is inspired by the method of Üstünel and Zakai (Probab. Theory Related Fields103 (1995) 409–429) on the Wiener space, although the corresponding algebra is more complex than in the Wiener case. The examples...

Invariant measure for some differential operators and unitarizing measure for the representation of a Lie group. Examples in finite dimension

Hélène Airault, Habib Ouerdiane (2011)

Banach Center Publications

Consider a Lie group with a unitary representation into a space of holomorphic functions defined on a domain 𝓓 of ℂ and in L²(μ), the measure μ being the unitarizing measure of the representation. On finite-dimensional examples, we show that this unitarizing measure is also the invariant measure for some differential operators on 𝓓. We calculate these operators and we develop the concepts of unitarizing measure and invariant measure for an OU operator (differential operator associated to...

Currently displaying 1 – 4 of 4

Page 1