Poincaré inequality for some measures in Hilbert spaces and application to spectral gap for transition semigroups
Using probabilistic tools, this work states a pointwise convergence of function solutions of the 2-dimensional Boltzmann equation to the function solution of the Landau equation for Maxwellian molecules when the collisions become grazing. To this aim, we use the results of Fournier (2000) on the Malliavin calculus for the Boltzmann equation. Moreover, using the particle system introduced by Guérin and Méléard (2003), some simulations of the solution of the Landau equation will be given. This result...
Using probabilistic tools, this work states a pointwise convergence of function solutions of the 2-dimensional Boltzmann equation to the function solution of the Landau equation for Maxwellian molecules when the collisions become grazing. To this aim, we use the results of Fournier (2000) on the Malliavin calculus for the Boltzmann equation. Moreover, using the particle system introduced by Guérin and Méléard (2003), some simulations of the solution of the Landau equation will be given. This result...
We consider the random vector , where are distinct points of and denotes the stochastic process solution to a stochastic wave equation driven by a noise white in time and correlated in space. In a recent paper by Millet and Sanz–Solé [10], sufficient conditions are given ensuring existence and smoothness of density for . We study here the positivity of such density. Using techniques developped in [1] (see also [9]) based on Analysis on an abstract Wiener space, we characterize the set of...
We consider the random vector , where t > 0, x1,...,xd are distinct points of and u denotes the stochastic process solution to a stochastic wave equation driven by a noise white in time and correlated in space. In a recent paper by Millet and Sanz–Solé [10], sufficient conditions are given ensuring existence and smoothness of density for . We study here the positivity of such density. Using techniques developped in [1] (see also [9]) based on Analysis on an abstract Wiener space, we characterize...
We give a generalization in the non-compact case to various positivity theorems obtained by Malliavin Calculus in the compact case.
With the pioneering work of [Pardoux and Peng, Syst. Contr. Lett.14 (1990) 55–61; Pardoux and Peng, Lecture Notes in Control and Information Sciences176 (1992) 200–217]. We have at our disposal stochastic processes which solve the so-called backward stochastic differential equations. These processes provide us with a Feynman-Kac representation for the solutions of a class of nonlinear partial differential equations (PDEs) which appear in many applications in the field of Mathematical Finance....
Se introduce una estructura de vorticidad basada en el movimiento browniano fraccionario con parámetro de Hurst H > 1/2 . El objeto de esta nota es presentar el siguiente resultado: Bajo una condición de integrabilidad adecuada sobre la medida ρ que controla la concentración de la vorticidad a lo largo de los filamentos, la energía cinética de la configuración está bien definida y tiene momentos de todos los órdenes.
We prove the existence and smoothness of density for the solution of a hyperbolic SPDE with free term coefficients depending on time, under hypoelliptic non degeneracy conditions. The result extends those proved in Cattiaux and Mesnager, PTRF123 (2002) 453-483 to an infinite dimensional setting.