Some theorems of random operator equations.
Let be a strongly elliptic operator on a -dimensional manifold (polyhedra or boundaries of polyhedra are also allowed). An operator equation with stochastic data is considered. The goal of the computation is the mean field and higher moments , , , of the solution. We discretize the mean field problem using a FEM with hierarchical basis and degrees of freedom. We present a Monte-Carlo algorithm and a deterministic algorithm for the approximation of the moment for . The key tool...
We study strictly parabolic stochastic partial differential equations on , d ≥ 1, driven by a Gaussian noise white in time and coloured in space. Assuming that the coefficients of the differential operator are random, we give sufficient conditions on the correlation of the noise ensuring Hölder continuity for the trajectories of the solution of the equation. For self-adjoint operators with deterministic coefficients, the mild and weak formulation of the equation are related, deriving...
We study various statistics related to the eigenvalues and eigenfunctions of random Hamiltonians in the localized regime. Consider a random Hamiltonian at an energy in the localized phase. Assume the density of states function is not too flat near . Restrict it to some large cube . Consider now , a small energy interval centered at that asymptotically contains infintely many eigenvalues when the volume of the cube grows to infinity. We prove that, with probability one in the large volume...
In this paper we study the parabolic Anderson equation , , , where the -field and the -field are -valued, is the diffusion constant, and is the discrete Laplacian. The -field plays the role of adynamic random environmentthat drives the equation. The initial condition , , is taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump...
The Tracy–Widom distribution is the large dimensional limit of the top eigenvalue of random matrix ensembles. We use the stochastic Airy operator representation to show that as the tail of the Tracy–Widom distribution satisfies
We show that the only flow solving the stochastic differential equation (SDE) on
We review some recent results in quantitative stochastic homogenization for divergence-form, quasilinear elliptic equations. In particular, we are interested in obtaining -type bounds on the gradient of solutions and thus giving a demonstration of the principle that solutions of equations with random coefficients have much better regularity (with overwhelming probability) than a general equation with non-constant coefficients.