Brownian local times.
A sample of i.i.d. continuous time Markov chains being defined, the sum over each component of a real function of the state is considered. For this functional, a central limit theorem for the first hitting time of a prescribed level is proved. The result extends the classical central limit theorem for order statistics. Various reliability models are presented as examples of applications.
A sample of i.i.d. continuous time Markov chains being defined, the sum over each component of a real function of the state is considered. For this functional, a central limit theorem for the first hitting time of a prescribed level is proved. The result extends the classical central limit theorem for order statistics. Various reliability models are presented as examples of applications.
We extend a result of Doney [Probab. Theory Related Fields 107 (1997)] on renewal sequences with infinite mean to renewal sequences of operators. As a consequence, we get precise asymptotics for the transfer operator and for correlations in dynamical systems preserving an infinite measure (including intermittent maps with an arbitrarily neutral fixed point).
For a binary stationary time series define to be the number of consecutive ones up to the first zero encountered after time , and consider the problem of estimating the conditional distribution and conditional expectation of after one has observed the first outputs. We present a sequence of stopping times and universal estimators for these quantities which are pointwise consistent for all ergodic binary stationary processes. In case the process is a renewal process with zero the renewal state...