On a first passage problem in general queueing systems with multiple vacations.
We obtain a closed formula for the Laplace transform of the first moment of certain exponential functionals of Brownian motion with drift, which gives the price of Asian options. The proof relies on an identity in law between the average on [0,t] of a geometric Brownian motion and the value at time t of a Markov process, for which we can compute explicitly the resolvent.
We prove that the large deviation principle holds for a class of processes inspired by semi-Markov additive processes. For the processes we consider, the sojourn times in the phase process need not be independent and identically distributed. Moreover the state selection process need not be independent of the sojourn times. We assume that the phase process takes values in a finite set and that the order in which elements in the set, called states, are visited is selected stochastically. The sojourn...
We prove that the large deviation principle holds for a class of processes inspired by semi-Markov additive processes. For the processes we consider, the sojourn times in the phase process need not be independent and identically distributed. Moreover the state selection process need not be independent of the sojourn times. We assume that the phase process takes values in a finite set and that the order in which elements in the set, called states, are visited is selected stochastically. The sojourn...