On the preemptive priority queues
A multi-server -type queueing system with a bounded total volume and finite queue size is considered. An AQM algorithm with the “accepting” function is being used to control the arrival process of incoming packets. The stationary queue-size distribution and the loss probability are derived. Numerical examples illustrating theoretical results are attached as well.
A queueing system with batch Poisson arrivals and single vacations with the exhaustive service discipline is investigated. As the main result the representation for the Laplace transform of the transient queue-size distribution in the system which is empty before the opening is obtained. The approach consists of few stages. Firstly, some results for a ``usual'' system without vacations corresponding to the original one are derived. Next, applying the formula of total probability, the analysis of...
We consider a Markov decision process for an queue that is controlled by batches of negative customers. More specifically, we derive conditions that imply threshold-type optimal policies, under either the total discounted cost criterion or the average cost criterion. The performance analysis of the model when it operates under a given threshold-type policy is also studied. We prove a stability condition and a complete stochastic comparison characterization for models operating under different...
We consider a Markov decision process for an MX/M/1 queue that is controlled by batches of negative customers. More specifically, we derive conditions that imply threshold-type optimal policies, under either the total discounted cost criterion or the average cost criterion. The performance analysis of the model when it operates under a given threshold-type policy is also studied. We prove a stability condition and a complete stochastic comparison characterization for models operating under different...
A single-server queueing system with a batch markovian arrival process (BMAP) and MAP-input of disasters causing all customers to leave the system instantaneously is considered. The system has two operation modes, which depend on the current queue length. The embedded and arbitrary time stationary queue length distribution has been derived and the optimal control threshold strategy has been determined.
A single-server queueing system with a batch Markovian arrival process (BMAP) and MAP-input of disasters causing all customers to leave the system instantaneously is considered. The system has two operation modes, which depend on the current queue length. The embedded and arbitrary time stationary queue length distribution has been derived and the optimal control threshold strategy has been determined.