Loading [MathJax]/extensions/MathZoom.js
We study two systems that are based on sums of weakly dependent
Bernoulli random variables that take values ± 1 with equal
probabilities. We show that already one step of the so-called
soft decision parallel interference cancellation, used in the third
generation of mobile telecommunication CDMA, is able to considerably
increase the number of users such a system can host. We also
consider a variant of the well-known Hopfield model of neural
networks. We show that this variant proposed by Amari...
We develop a cavity method for the spherical Sherrington–Kirkpatrick model at high temperature and small external field. As one application we compute the limit of the covariance matrix for fluctuations of the overlap and magnetization.
We show that for critical reversible attractive Nearest Particle Systems all equilibrium measures are convex combinations of the upper invariant equilibrium measure and the point mass at all zeros, provided the underlying renewal sequence possesses moments of order strictly greater than
and obeys some natural regularity conditions.
I consider p-Bernoulli bond percolation on transitive, nonamenable, planar graphs with one end and on their duals. It is known from [BS01] that in such a graph G we have three essential phases of percolation, i.e.
,
where is the critical probability and -the unification probability. I prove that in the middle phase a.s. all the ends of all the infinite clusters have one-point boundaries in ∂ℍ². This result is similar to some results in [Lal].
A competition model on between three clusters and governed by directed last passage percolation is considered. We prove that coexistence, i.e. the three clusters are simultaneously unbounded, occurs with probability . When this happens, we also prove that the central cluster almost surely has a positive density on . Our results rely on three couplings, allowing to link the competition interfaces (which represent the borderlines between the clusters) to some particles in the multi-TASEP, and...
We consider the one-dimensional asymmetric simple exclusion process (ASEP) in which particles jump to the right at rate p∈(1/2, 1] and to the left at rate 1−p, interacting by exclusion. In the initial state there is a finite region such that to the left of this region all sites are occupied and to the right of it all sites are empty. Under this initial state, the hydrodynamical limit of the process converges to the rarefaction fan of the associated Burgers equation. In particular suppose that the...
Currently displaying 1 –
20 of
42