Hausdorff dimension of the SLE curve intersected with the real line.
We consider an energy conserving linear dynamics that we perturb by a Glauber dynamics with random site dependent intensity. We prove hydrodynamic limits for this non-reversible system in random media. The diffusion coefficient turns out to depend on the random field only by its statistics. The diffusion coefficient defined through the Green–Kubo formula is also studied and its convergence to some homogenized diffusion coefficient is proved.
We study the hydrodynamic limit for some conservative particle systems with degenerate rates, namely with nearest neighbor exchange rates which vanish for certain configurations. These models belong to the class of kinetically constrained lattice gases (KCLG) which have been introduced and intensively studied in physical literature as simple models for the liquid/glass transition. Due to the degeneracy of rates there exist blocked configurations which do not evolve under the dynamics and in general...
Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m aj αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d ∂xk ∂Wk Φ(ρ). We also derive some properties of the operator ∑k=1d ...
We consider the exclusion process in the one-dimensional discrete torus with points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance , with . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter . If , the hydrodynamic limit is given by the usual heat equation. If , it is given by a parabolic equation involving an operator , where ...