Previous Page 2

Displaying 21 – 23 of 23

Showing per page

Anomalous heat-kernel decay for random walk among bounded random conductances

N. Berger, M. Biskup, C. E. Hoffman, G. Kozma (2008)

Annales de l'I.H.P. Probabilités et statistiques

We consider the nearest-neighbor simple random walk on ℤd, d≥2, driven by a field of bounded random conductances ωxy∈[0, 1]. The conductance law is i.i.d. subject to the condition that the probability of ωxy>0 exceeds the threshold for bond percolation on ℤd. For environments in which the origin is connected to infinity by bonds with positive conductances, we study the decay of the 2n-step return probability 𝖯 ω 2 n ( 0 , 0 ) . We prove that 𝖯 ω 2 n ( 0 , 0 ) is bounded by a random constant timesn−d/2 in d=2, 3, while it...

Averaged large deviations for random walk in a random environment

Atilla Yilmaz (2010)

Annales de l'I.H.P. Probabilités et statistiques

In his 2003 paper, Varadhan proves the averaged large deviation principle for the mean velocity of a particle taking a nearest-neighbor random walk in a uniformly elliptic i.i.d. environment on ℤd with d≥1, and gives a variational formula for the corresponding rate function Ia. Under Sznitman’s transience condition (T), we show that Ia is strictly convex and analytic on a non-empty open set , and that the true velocity of the particle is an element (resp. in the boundary) of when the walk is non-nestling...

Currently displaying 21 – 23 of 23

Previous Page 2